S

7/

Whamcloud

Lustre On Demand
Evolution of Data Tiering on Storage System

Shuichi lhara (sihara@whamcloud.com)

Rahul Deshmukh (rdeshmukh@whamcloud.com)

STORAGE

Agenda S/B
Whamcloud

» Introduction
» LOD (Lustre On Demand) as Tiering solution

* Qverview
* Use case

» Implementation and usage
» Current Status and Future work
» Conclusions

whamcloud.com

Evolution of data tiering on storage system S,B
Whamcloud

» First Generation — primary filesystem to archive
* E.g. HDD based filesystem to tape or even on cloud
* HSM provides managing of data residence and transparent data access
» Second Generation — another tier in front of primary filesystem
* Burst Buffer
* Local filesystem or other filesystem on flash device
» Simplification, Automation and Transparency are important
* Users complain about complexity, but administrator and users wants 10 acceleration on flash devices
* /tmp or /dev/shm are easy to use for users, but user need to manage data residence by themselves

Introduce LOD (Lustre On Demand), a tiering approach for Lustre, provides temporary filesystem per
job and automated synchronization with primary filesystem job scheduler.

whamcloud.com

)

Various Lustre caching options s
Whamcloud

» Hardware cache
* Memory, SSD/NVMe, write back cache on storage array, cache on drives
* Lustre relies on hardware capability transparently

» Ladvise (Lustre fadvise)
* Giving hints to files and prefetch data on OSS memory or SSD with DSS
* This is similar idea of fadvise(), but through Lustre client and Lustre server side caching

» PCC (Persistent Client Cache)

* Leverages local SSD/NVMe on client and keep single namespace
* Support write/read caches with HSM (and group lock) features for consistency

» Lustre Write Back Cache
* Data and metadata into RAM on client as cache
* Avoid of LDLM and network latency

whamcloud.com

LOD (Lustre On Demand) Wha’g?)
mMCIou

» Provide Dynamic Lustre filesystem on compute nodes using local SSD/NVMe

* Temporary fast Lustre filesystem across the compute nodes

* LOD creates Lustre on computes nodes dynamically
» Integration with job scheduler

* User turn LOD on/off per job at job submission

* Currently integrated into SLURM'’s Burst Buffer option, but other job scheduler also could work
» Transparent and automated stage-in/out

* User can define file/directory list on stage-in/out to LOD at Job submission

* LOD automatically sync/migrate data from persistent Lustre to created temporary Lustre filesystem
» Lots of flexibility and extendibility

* Configurable MDT/OST configuration for advanced users

whamcloud.com

S

LOD architecture and design s
Whamcloud

Compute Nodes(Lustre Client)
e e m_—-—-] E@;_-——-]ﬂ e e e Triggers Creating LOD

LOD-A for
Job A

Automated Automated
Stage-in/out Stage-in/out

Job Scheduler

'\

UserA UserB

LOD-B for
Job B

whamcloud.com

)

Use cases(1) : Accelerated random I/O operations 7
Whamcloud
[JOB]

B B 8 -

Avoiding Random /0.
Prefetching/syncing files with Sequential I/O

whamcloud.com

)

Use cases(2) : Reduce loads on PFS 7
Whamcloud

los] Lustre clients mount both LOD and

Persistent Lustre

II II IIII IIII Temporary Clustered
filesystem for Job

Reading files from Persistent

Lustre directory Avoid unnessary 1/0 to
Persistent Lustre Filesystem

- @ e

whamcloud.com

Use cases(3) : Isolated namespace per JOB or clients S/B
Whamcloud

Client can have multiple
LOD mount points

[JOB-A][JOB-B][JOB-C]

(©1

~

P>
k) —

Allocate SSD devices and
create LOD per JOB

Stage-in/out policy can be per LOD

whamcloud.com

)

LOD Implementation 7
Whamcloud

» LOD is a framework that runs on top of job scheduler
* Job scheduler have storage extension/plugin to manage storage resources on compute nodes
* Prolog/epliog also works, but storage extensions/plugin can allow tighter integration and flexibility

» Selected SLURM for demonstration of LOD
* Open source and one of the major job scheduler for HPC
* “Burst Buffer” plugin is available
* LOD framework can be integrated on BB plugin

» No more patched kernel for Lustre server
* Thanks for patchless server support

whamcloud.com

SLURM : Introduction S,B
Whamcloud

» Whatis SLURM ? (Simple Linux Utility for Resource Management)

* Allocates resource (compute nodes) for user to execute the job —
. . Yy
o Exclusive and/or non-exclusive access

Login Node

. . L 3
o For some duration of time X _
* Provides facility to start, execute and monitor jobs on allocated :>[:]E:> B I R —

nodes User-A |
* Manages queue of pending jobs in case of contention for resource A H
v Compute Nodes

» Howtouseit?

* Provides sets of command to start, execute and monitor jobs
e.g. sbatch, salloc, sinfo, etc. #!/bin/bash

 Mainly jobs are run in EE—) #SBATCH -p debug

#SBATCH -N 1
o Batch mode (e.g. sbatch test.sh) #SBATCH -t 00:05:00

o Interactive mode (e.g. salloc command) srun a.out

whamcloud.com

test.sh

SLURM : Burst Buffer (BB) Infrastructure S,B

Whamcloud
» SLURM Burst Buffer is a pluggable architecture
which facilitates usage of high-speed storage resource
» Burst Buffer infrastructure has following workflow:
— | Generic
* Allocates burst buffer resource - -
* Staging in required file(s) into it
. BB | |—
* Schedule compute node(s) for the job
e cor e =
execution using these resources
* Stage out file(s) if needed after completion of job Login Node —
User-A
» Currently there are two plugins available: S
* Generic: Not implemented SLURM WLM

* Cray

whamcloud.com

)

BB plugin integration details 7
Whamcloud

Important steps to add new plugin into BB infrastructure are:

» Unigue name assigned to plugin and same will be used in slurm.conf
* E.g. for generic plugin it is like:

const char plugin_type[] = "burst_buffer/generic"; ﬂb_p_get_system_size \
bb_p load_state
* And mention into configuration as: bb_p_get_status
bb_p state_pack
BurstBufferType=burst_buffer/generic bb_p_reconfig

bb_p_job_validate
bb_p_ job_validate2
bb_p job_set_tres_cnt

H bb_p job _get est start
» Workflow API to be implemented > B
bb_p job_test stage_in
bb_p job_begin
. bb_p job_revoke_alloc
» Current LOD implementation using generic plugin bb_p_job_start_stage_out
bb_p job_test_post_run
bb_p job_test_stage_ out
bb_p_job_canceﬂ
bb_p xlate bb_2 tres_str

whamcloud.com

)

Job execution workflow 7
Whamcloud
» LOD Framework and SLURM integration

* LOD Framework perform underlying management RenTingIolA l] e
BB

functions e.g. creation of Lustre on demand based X-Dﬂ T e
L{ LoD ‘_. C2:JobA

on user input ,
Login Node

User-A

* Used SLURM generic BB plugin skeleton and

—
Stage in & Stage out

integrated LOD framework into it for ease of use
SLURM WLM

* How this works @ c3
o User will submit the job, e.g. Job A

o It will allocate compute node, e.g. C2 SOpReTiod

o The files which required for job will be stage_in first

o Once files stage_in then it will start execution of job

o After completion of job, only required file(s) to be

stage_out (sync) to main PFS

whamcloud.com

S

How to use LOD : Example 7
Whamcloud

Running it in batch mode using slurm command “sbatch <script_file>”
S sbatch example_job.sh

- [example job.sh] ,\

#1/bin/bash

#LOD setup_lod type=scratch capacity=10GB

#LOD stage in source=/mnt/pfs/large file destination=SLOD_MNT/ type=file

#LOD stage out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file
srun sample task.sh

\, [example job.sh] ~

whamcloud.com

#LOD : setup_lod S/B

Whamcloud
» Information : ,
- - - - ’ [example job.sh] "\
This will setup the LOD instance as per job 4 bin/bash
requirement through SLURM #L0D setup_lod type=scratch capacity=10GB

#LOD stage _in source=/mnt/pfs/large file destination=SLOD_MNT/ type=file
#LOD stage_out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file
» Parameters srun sample_task.sh

\ [example job.sh] /

* type = scratch or persistent
* capacity = <number>[MB|GB|TB|PB]

* lod_config = <path to config file> This is optional parameter.

whamcloud.com

#LOD : setup_lod S/B

Whamcloud
» Information : ,
- - - - ’ [example job.sh] "\
This will setup the LOD instance as per job 4 bin/bash
requirement through SLURM #L0D setup_lod type=scratch capacity=10GB

#LOD stage _in source=/mnt/pfs/large file destination=SLOD_MNT/ type=file
#LOD stage_out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file
» Parameters srun sample_task.sh

\ [example job.sh] /

* type = scratch or persistent
* capacity = <number>[MB|GB|TB|PB]

* lod_config = <path to config file> This is optional parameter.

whamcloud.com

#LOD : stage_in S/B

Whamcloud
» Information : :
’ [example job.sh] \
This will fetch file(s)/directory(ies) needed #1/bin/bash
for the job before it starts through SLURM #LOD setup_lod type=scratch capacity=10GB

#LOD stage in source=/mnt/pfs/large file destination=SLOD MNT/ type=file
#LOD stage out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file

» Parameters : srun sample_task.sh

* source : path of source file/directory \, [example job.sh] /

* destination : path of destination file/directory

* type : file or directory

whamcloud.com

#LOD : stage out S/B
Whamcloud

» Information : p [example job.sh] \

This will sync file(s)/directory(ies) needed #l/bin/bash
#LOD setup lod type=scratch capacity=10GB

#LOD stage_in source=/mnt/pfs/large_file destination=5LOD_MNT/ type=file
#LOD stage_out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file
srun sample_task.sh

for the job after completion of job

» Parameters :
* source : path of source file/directory

\ [example job.sh] /

* destination : path of destination file/directory

* type : file or directory

whamcloud.com

S

srun sample_task.sh s
Whamcloud
» Information: 1 [example job.sh] \
- Ready to execute the job as the required #|/bin/bash _
. _ T _ #LOD setup lod type=scratch capacity=10GB
instance is ready with input files needed. #LOD stage_in source=/mnt/pfs/large_file destination=SLOD_MNT/ type=file
* After completion of the job all the files except #LOD stage_out source=SLOD_MNT/output destination=/mnt/pfs/sample_task/ type=file

srun sample_task.sh

files mention under stage_out will be removed

\ [example job.sh] J/

whamcloud.com

Current Status and future Plan 8,3
Whamcloud

» Current status:
* LOD frame work : Basic infrastructure ready with limited testing
* Integration with SLURM: Used generic BB plugin for integration

» stage_in/stage out:
Automate data movement in Lustre server side use case where files are transparently
move into and from flash storage tier, using FLR as per job requirement. e.g.
#LOD stage_in source=hdd:/mnt/pfs/large_file destination=flash: type=flr_file
#LOD stage_out source=flash:large_file destination=hdd type=fir_file

» To improve on LOD creation part by providing profile based creation
e.g. data intensive, metadata intensive, balanced, default

» Options to tune LOD as per job requirement for small files, 1/O size, /O patters

whamcloud.com

Conclusions 8/5
Whamcloud

» Introduced Lustre On Demand as a new Tiering option on Lustre

This not only allows new use cases on Lustre and but also accelerate
|/O Performance

» Lustre On Demand is a framework and integrated as an extension of the
Burst Buffer plugin on the SLURM job scheduler as a prototype implementation

» Will continue to extend LOD framework and look at integration with another job scheduler

whamcloud.com

S

7/

Whamcloud

Thank you!

STORAGE

