
Shuichi Ihara (sihara@whamcloud.com)

Rahul Deshmukh (rdeshmukh@whamcloud.com)

Lustre On Demand
Evolution of Data Tiering on Storage System

whamcloud.com

Agenda

► Introduction

► LOD (Lustre On Demand) as Tiering solution

• Overview

• Use case

► Implementation and usage

► Current Status and Future work

► Conclusions

whamcloud.com

Evolution of data tiering on storage system

► First Generation – primary filesystem to archive

• E.g. HDD based filesystem to tape or even on cloud

• HSM provides managing of data residence and transparent data access

► Second Generation – another tier in front of primary filesystem

• Burst Buffer

• Local filesystem or other filesystem on flash device

► Simplification, Automation and Transparency are important

• Users complain about complexity, but administrator and users wants IO acceleration on flash devices

• /tmp or /dev/shm are easy to use for users, but user need to manage data residence by themselves

Introduce LOD (Lustre On Demand), a tiering approach for Lustre, provides temporary filesystem per
job and automated synchronization with primary filesystem job scheduler.

whamcloud.com

Various Lustre caching options

► Hardware cache

• Memory, SSD/NVMe, write back cache on storage array, cache on drives

• Lustre relies on hardware capability transparently

► Ladvise (Lustre fadvise)

• Giving hints to files and prefetch data on OSS memory or SSD with DSS

• This is similar idea of fadvise(), but through Lustre client and Lustre server side caching

► PCC (Persistent Client Cache)

• Leverages local SSD/NVMe on client and keep single namespace

• Support write/read caches with HSM (and group lock) features for consistency

► Lustre Write Back Cache

• Data and metadata into RAM on client as cache

• Avoid of LDLM and network latency

whamcloud.com

LOD (Lustre On Demand)

► Provide Dynamic Lustre filesystem on compute nodes using local SSD/NVMe

• Temporary fast Lustre filesystem across the compute nodes

• LOD creates Lustre on computes nodes dynamically

► Integration with job scheduler

• User turn LOD on/off per job at job submission

• Currently integrated into SLURM’s Burst Buffer option, but other job scheduler also could work

► Transparent and automated stage-in/out

• User can define file/directory list on stage-in/out to LOD at Job submission

• LOD automatically sync/migrate data from persistent Lustre to created temporary Lustre filesystem

► Lots of flexibility and extendibility

• Configurable MDT/OST configuration for advanced users

whamcloud.com

LOD architecture and designLOD architecture and design

SSD SSD SSD SSD

SSD SSD SSD SSD

Persistent Lustre Filesystem

Triggers Creating LOD

LOD-A for
Job A

LOD-B for
Job B

Compute Nodes(Lustre Client)

UserA UserB

Job Scheduler

Automated
Stage-in/out

Automated
Stage-in/out

whamcloud.com

Use cases(1) : Accelerated random I/O operations

Persistent Lustre Filesystem

SSD SSD SSD SSD LOD

Avoiding Random I/O.
Prefetching/syncing files with Sequential I/O

Small Random I/O to LOD

JOB

whamcloud.com

Use cases(2) : Reduce loads on PFS

Persistent Lustre Filesystem

SSD SSD SSD SSD LOD

Temporary Clustered
filesystem for Job

JOB

Reading files from Persistent
Lustre directory

Lustre clients mount both LOD and
Persistent Lustre

Avoid unnessary I/O to
Persistent Lustre Filesystem

whamcloud.com

Use cases(3) : Isolated namespace per JOB or clients

Persistent Lustre Filesystem

SSD

SSD

JOB-B

SSD

SSD SSD

SSD

JOB-A

SSD 3D-NAND

JOB-C
Allocate SSD devices and
create LOD per JOB

Client can have multiple
LOD mount points

Stage-in/out policy can be per LOD

3D-NAND

whamcloud.com

LOD Implementation

► LOD is a framework that runs on top of job scheduler

• Job scheduler have storage extension/plugin to manage storage resources on compute nodes

• Prolog/epliog also works, but storage extensions/plugin can allow tighter integration and flexibility

► Selected SLURM for demonstration of LOD

• Open source and one of the major job scheduler for HPC

• “Burst Buffer” plugin is available

• LOD framework can be integrated on BB plugin

► No more patched kernel for Lustre server

• Thanks for patchless server support

whamcloud.com

SLURM : Introduction

► What is SLURM ? (Simple Linux Utility for Resource Management)

• Allocates resource (compute nodes) for user to execute the job

o Exclusive and/or non-exclusive access

o For some duration of time

• Provides facility to start, execute and monitor jobs on allocated

nodes

• Manages queue of pending jobs in case of contention for resources

► How to use it ?

• Provides sets of command to start, execute and monitor jobs

e.g. sbatch, salloc, sinfo, etc.

• Mainly jobs are run in

o Batch mode (e.g. sbatch test.sh)

o Interactive mode (e.g. salloc command)

whamcloud.com

SLURM : Burst Buffer (BB) Infrastructure

► SLURM Burst Buffer is a pluggable architecture

which facilitates usage of high-speed storage resource

► Burst Buffer infrastructure has following workflow:

• Allocates burst buffer resource

• Staging in required file(s) into it

• Schedule compute node(s) for the job

execution using these resources

• Stage out file(s) if needed after completion of job

► Currently there are two plugins available:

• Generic: Not implemented

• Cray

whamcloud.com

BB plugin integration details

Important steps to add new plugin into BB infrastructure are:

► Unique name assigned to plugin and same will be used in slurm.conf

• E.g. for generic plugin it is like:

const char plugin_type[] = "burst_buffer/generic";

• And mention into configuration as:

BurstBufferType=burst_buffer/generic

► Workflow API to be implemented

► Current LOD implementation using generic plugin

whamcloud.com

Job execution workflow

► LOD Framework and SLURM integration

• LOD Framework perform underlying management

functions e.g. creation of Lustre on demand based

on user input

• Used SLURM generic BB plugin skeleton and

integrated LOD framework into it for ease of use

• How this works

o User will submit the job, e.g. Job A

o It will allocate compute node, e.g. C2

o The files which required for job will be stage_in first

o Once files stage_in then it will start execution of job

o After completion of job, only required file(s) to be

stage_out (sync) to main PFS

whamcloud.com

How to use LOD : Example

Running it in batch mode using slurm command “sbatch <script_file>”
$ sbatch example_job.sh

whamcloud.com

#LOD : setup_lod

► Information :

This will setup the LOD instance as per job

requirement through SLURM

► Parameters

• type = scratch or persistent

• capacity = <number>[MB|GB|TB|PB]

• lod_config = <path to config file> This is optional parameter.

whamcloud.com

#LOD : setup_lod

► Information :

This will setup the LOD instance as per job

requirement through SLURM

► Parameters

• type = scratch or persistent

• capacity = <number>[MB|GB|TB|PB]

• lod_config = <path to config file> This is optional parameter.

whamcloud.com

#LOD : stage_in

► Information :

This will fetch file(s)/directory(ies) needed

for the job before it starts through SLURM

► Parameters :

• source : path of source file/directory

• destination : path of destination file/directory

• type : file or directory

whamcloud.com

#LOD : stage_out

► Information :

This will sync file(s)/directory(ies) needed

for the job after completion of job

► Parameters :

• source : path of source file/directory

• destination : path of destination file/directory

• type : file or directory

whamcloud.com

srun sample_task.sh

► Information:

• Ready to execute the job as the required

instance is ready with input files needed.

• After completion of the job all the files except

files mention under stage_out will be removed

whamcloud.com

Current Status and future Plan

► Current status:

• LOD frame work : Basic infrastructure ready with limited testing

• Integration with SLURM: Used generic BB plugin for integration

► stage_in/stage_out :

Automate data movement in Lustre server side use case where files are transparently

move into and from flash storage tier, using FLR as per job requirement. e.g.

#LOD stage_in source=hdd:/mnt/pfs/large_file destination=flash: type=flr_file

#LOD stage_out source=flash:large_file destination=hdd type=flr_file

► To improve on LOD creation part by providing profile based creation

e.g. data intensive, metadata intensive, balanced, default

► Options to tune LOD as per job requirement for small files, I/O size, I/O patters

whamcloud.com

Conclusions

► Introduced Lustre On Demand as a new Tiering option on Lustre

This not only allows new use cases on Lustre and but also accelerate

I/O Performance

► Lustre On Demand is a framework and integrated as an extension of the

Burst Buffer plugin on the SLURM job scheduler as a prototype implementation

► Will continue to extend LOD framework and look at integration with another job scheduler

Thank you!

